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Abstract. Composed ensembles of random unitary matrices are defined via products of
matrices, each pertaining to a given canonical circular ensemble of Dyson. We investigate
statistical properties of spectra of some composed ensembles and demonstrate their physical
relevance. We also discuss the methods of generating random matrices distributed according to
invariant Haar measure on the orthogonal and unitary group.

1. Introduction

Random unitary matrices are often used to describe the process of chaotic scattering [1, 2],
conductance in mesoscopic systems[3] and statistics of quantum, periodically driven systems
(see [4] and references therein). They may be defined by circular ensembles of unitary
matrices, first considered by Dyson [5]. He defined circular orthogonal, unitary or symplectic
ensembles (COE, CUE and CSE), which display different transformation properties [6].
The distribution of matrix elements and their correlations are known for these canonical
ensembles [7–10].

Our investigations are motivated by many successful applications of the random matrix
theory to problems of quantum chaos, i.e. to the description of quantum properties of systems
chaotic in the classical limit. Random matrices of three canonical circular ensembles appear
to provide quantitatively verifiable predictions concerning statistical properties of quasi-
energy spectra, transition amplitudes etc for quantum chaotic systems [4]. For systems
without generalized time-reversal symmetry one should use CUE, while COE, consisting
of unitary symmetric matrices, corresponds to the time-reversal invariant systems (with
integer spin). The so-called circular Poissonian ensemble (CPE) of diagonal unitary matrices
with independent unimodular eigenvalues has also found applications for certain classically
integrable systems.

In this paper we shall study statistical properties of composed ensembles defined by
products of unitary matrices, each drawn with a given probability distribution. Products
of matrices arise in a natural way when we consider the evolution of kicked systems.
Unitary propagators transporting wavefunctions of such systems over one period of the
kicking perturbation are products of ‘free’ evolution propagators and unitary transformations
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corresponding to instantaneous kicks. Moreover, products of two unitary matrices also
appear in the theory of chaotic scattering [11, 12].

Due to rotational invariance of the canonical circular ensembles the density of
eigenphases is constant in the range(0, 2π) and no unfolding of the spectra is required.
The same concerns also composed ensembles of unitary matrices discussed in this work.
In contrast to the Gaussian ensembles of Hermitian matrices, we do not need, therefore, to
distinguish the central part or wings of the spectrum and to treat them separately.

This paper is organized as follows. In section 2 we briefly recall the necessary
definitions and introduce notation. Section 3 contains results concerning spectral properties
of composed ensembles of random unitary matrices. This paper is completed by concluding
remarks. In the appendices we review methods of generating random matrices according to
the invariant Haar measures on the orthogonal and unitary group.

2. Canonical ensembles of unitary matrices

Circular ensembles of matrices were defined by Dyson [5] as the subsets of the set of unitary
matrices. Uniqueness of the ensembles is imposed by introducing measures invariant under
appropriate groups of transformations [13]. Specifically the CUE consists of all unitary
matrices with the (normalized) Haar measureµU on the unitary groupUN . The COE is
defined on the setSN of all symmetric unitary matricesS = ST = (S†)−1 by the property
of being invariant under all transformations by an arbitrary unitary matrixW ,

S → WT SW (2.1)

where T denotes the transposition. The normalized measure on COE will be denoted by
µS .

Eigenvalues of anN × N unitary matrix lie on the unit circle,λi = exp(iϕi);
0 6 ϕi 6 2π , i = 1, . . . , N . The joint probability distribution (JPD) of eigenvalues
for each ensemble was given by Dyson [5]

Pβ(ϕ1, . . . , ϕN) = Cβ
∏
i<j

|eiϕi − eiϕj |β (2.2)

whereCβ is a normalization constant andβ equals 1 and 2 for COE and CUE, respectively.
This number is sometimes called the repulsion parameter, since it determines the behaviour
of levels spacings asP(s) ∼ sβ for small s [6].

The above formula withβ = 0 describes spectra of CPE of diagonal unitary matrices
with N independent phases drawn with uniform distribution in [0, 2π). The set of diagonal
matrices will be denoted byDN and the normalized measure on CPE (which is simply the
product measure ofN measures on the unit circle) byµD. For further consideration we
will also need an ensemble of orthogonal matrices with the probability densityµO defined
by the (normalized) Haar measure on the orthogonal group inN dimensions. We shall
call this ensemble the Haar orthogonal ensemble (HOE). It is invariant with respect to all
transformationsO1 → O2O1O3, whereO2 andO3 denote arbitrary orthogonal matrices.
The joint distribution of eigenvalues of this ensemblePort(ϕ1, . . . , ϕN) can be found in [14]
and is recalled in appendix A. In this appendix we propose a method of generating such
matrices numerically and study some properties of their spectra.
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3. Spectra of products of matrices of circular ensembles

3.1. Notation

We are interested in the spectral properties of products of unitary matrices, each pertaining
to a given ensemble. Let us introduce a following notation:D denotes a diagonal unitary
matrix of CPE,S denotes a symmetric matrix of COE,U represents a unitary matrix of
CUE andO represents an orthogonal matrix typical to HOE. As usual, the symbolSU

represents a product of two concrete matricesS andU . On the other handS ∗U will denote
the composed ensemble of unitary matrices defined as the image of the mapping

SN × UN 3 (S, U) 7→ SU ∈ UN (3.1)

with the measure induced by this mapping in its image by the product measureµS × µU
on the Cartesian productSN × UN . Indices can be added to any matrix, if needed. For
exampleS1S2 denotes a product of two symmetric matrices, whileS1 ∗ S2 represents the
composed ensemble defined as the image ofSN ×SN , which is different from the ensemble
of squared symmetric matricesS1 ∗ S1 obtained by the mapping

SN 3 S 7→ S2 ∈ UN. (3.2)

3.2. Results

The main results of this paper concerning the spectra of products of unitary matrices are
collected in table 1. For convenience we also added some previously known results. JPD
Pβ represents formula (2.2), which depending onβ describes properties of all canonical
ensembles. The last column of the table gives a reference to the further text. Some items
have not been proved rigorously yet, but are based on numerical results.

We shall commence the discussion of the above results with an important note. The
fact that the JPD of eigenvalues characteristic to a given composed ensemble is the same
as, for example, for CUE, does not mean that the measures of both ensemble are the same.
In other words, if probability measures of two ensembles are equal(µa = µb), then the
corresponding JPD are the same(Pa = Pb). The reverse is not true, which explains why
the composition of ensembles is not transitive. For example JPD ofS is the same as for
S1 ∗ S2 but differs from this forS1 ∗ S2 ∗ S3.

3.3. Remarks and references

Detailed remarks and references to the table are collected below.
(a) Let us consider an arbitrary subsetX of the unitary groupUN with an arbitrary

measureµX, and the mapping:

f : UN ×X 3 (U,A) 7→ UA ∈ UN. (3.3)

The product measureµU×X = µU × µX in UN ×X induces a measure in the image off ,
i.e. in UN . SinceµU is left-invariant, i.e. invariant with respect to the left multiplication
by V ∈ UN the same is true for the product measure, i.e.µU × µX is invariant under
the transformation(U,A) 7→ (VU,A). In consequence also the measure induced onUN
is left-invariant. There is only one (normalized) left-invariant measure onUN—the Haar
measure, hence the resulting ensembleU ∗ A is CUE. Cases (A2–A5) from table 1 are
particular examples.

(b) Since the Haar measure onUN is also right-invariant an analogous reasoning shows
thatB ∗ U gives the CUE ensemble for an arbitrary ensemble of unitary matricesX from
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Table 1. Composed ensembles, their measures (? represents an unknown measure), and their
joint probability distribution of eigenvalues. Apart from ensembles defined in the text, symbol
X represents an arbitrary ensemble of unitary matrices andα denotes an arbitrary positive real
number.

No Composed ensemble Measure Spectrum Remarks

A1 U µU P2 CUE
A2 U ∗ S µU P2 (a)
A3 U ∗D µU P2 (a)
A4 U ∗O µU P2 (a)
A5 U1 ∗ U2 µU P2 CUE
A6 X1 ∗ U ∗X2 µU P2 (b)

B1 S µS P1 COE
B2 UT ∗ U µS P1 (d)
B3 UT ∗D ∗ U µS P1 (d)
B4 S ∗D µS P1 (g)
B5 S1 ∗ S2 ? P1 (f)
B6 S1 ∗ S2 ∗ S1 ? P1 (e)
B7 Sα1 ∗ S2 ∗ Sα1 ? P1 (e)
B8 XT ∗ S ∗X ? P1 (e)

C1 S1 ∗ S2 ∗D ? P2 (n1)
C2 S1 ∗ S2 ∗ S3 ? P2 (n1)
C3 S1 ∗ S1 ? - (h)
C4 S1 ∗ S1 ∗D ? P1 (n2)
C5 S1 ∗D ∗ S1 ? P1 (n2)

D1 D1 ∗D2 µD P0 (c)
D2 O1 ∗O2 µO Port (c)
D3 O ∗ S ? P2 (n3)
D4 O ∗ S ∗D ? P2 (n3)
D5 O1 ∗D ∗O2 ? P2 (n4)
D6 O ∗ S1 ∗OT ∗ S2 ? P1 (e), (f) (see B8,B5)
D7 D1 ∗O ∗D2 ∗OT ? P1 (n5)
D8 O ∗D1 ∗OT ∗D1 ? P1 (n6)
D9 D1 ∗O1 ∗D2 ∗OT

1 ∗O2 ∗D3 ∗OT
2 ? P2 (n7)

D10 U ∗D1 ∗ UT ∗D2 ? P1 (d), (g) (see B3,B4)
D11 U ∗D1 ∗ U † ∗D2 ? P2 (n8)
D12 S ∗D1 ∗ S† ∗D2 ? P2 (n9)

which the matricesB are drawn. Further, sinceU ∗A andB ∗U are CUE so isB ∗U ∗A
for A andB from arbitrary ensemblesX1 andX2 of unitary matrices (case A6 from the
table).

(c) Similar results are valid for diagonal (or orthogonal) matrices. We must only
substitute in the previous reasoning, CUE by CPE (or the ensemble of orthogonal matrices)
with measuresµD (orµO) andX by an arbitrary subset of diagonal (or orthogonal) matrices.
Cases D1 and D2 from the table correspond to this situation.

(d) It is easy to prove [15] that the mapping

g : UN 3 U 7→ UTU ∈ SN (3.4)

induces in its image (the full set of symmetric unitary matrices) the COE measureµS , i.e.
in our notationUT ∗ U = COE. This corresponds to the B2 and B3 in the table. In the
latter case we shall observe thatUTDU = V T V , whereV = D1/2U andD1/2 denotes an
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arbitrary diagonal unitary matrix such thatD1/2D1/2 = D. The mapping

UN ×DN 7→ V = D1/2U ∈ UN (3.5)

induces, according to (b),µU in UN which reduces B3 to B2 withU substituted byV .
(e) Let, as previously,X denote an arbitrary subset ofUN with an arbitrary probabilistic

measureµX. From (a) it is now clear that the composite mappingg ◦ f wheref andg are
given by (3.3) and (3.4)

g ◦ f : UN ×X 3 (U,A) 7→ ATUT UA ∈ SN (3.6)

induces COE measureµS in the imageSN . Consider now the two following mappings

h : UN ×X 3 (U,A) 7→ (UT U,A) ∈ SN ×X
k : SN ×X 3 (S,A) 7→ AT SA ∈ SN.

(3.7)

According to the above,h induces in its image the measureµS × µX. Sinceg ◦ f = k ◦ h
they induce the same measure in their imageSN and, as a consequence,k inducesµS in SN ,
i.e. in our notationAT ∗S ∗A =COE forA from an arbitrary ensembleX. This corresponds
to the case B8 in the table and its special forms B6 and B7.

(f) Until now we considered the situations where the ensemble is obtained by
multiplication of matrices coincided with CUE, COE or CPE. Our main interest consists,
however, of examining statistical properties of spectra of resulting matrices. This allows us
to investigate more general situations in which products either do not have specific symmetry
properties or the induced measure is not equal toµU , µO , µS or µD. As an example, let
us consider the mapping

s : SN × SN 3 (S1, S2) 7→ S1S2 ∈ UN. (3.8)

Observe that the image ofs is the whole setUN . Indeed, it is enough to show that an
arbitrary unitary matrixU is a product of two symmetric unitary matrices. To this end let
us denote byW an arbitrary unitary matrix which diagonalizesU (such a matrixW exists
sinceU is unitary), i.e.

U = WDW † WW † = W ∗WT = I (3.9)

whereD is diagonal and unitary. Now takeS1 = WWT and S2 = W ∗DW †. Both S1

and S2 are unitary and symmetric andS1S2 = WDW † = U . Nevertheless the measure
induced onUN by the COE measuresµS×µS on SN ×SN is not equal to the CUE measure
µU . Indeed, for allS1, S2 the matrixS1S2 is unitary similar toS1/2

1 S2S
1/2
1 , whereS1/2

1 is
an arbitrary unitary, symmetric matrix such thatS1/2

1 S
1/2
1 = S1 (such a unitary, symmetric

S
1/2
1 exists sinceS1 is unitary and symmetric). It means that the spectra ofS1S2 and
S

1/2
1 S2S

1/2
1 = (S1/2

1 )T S2S
1/2
1 coincide. But from (e) above we know that the mapping

SN ×X 3 (S2, S
1/2
1 ) 7→ (S

1/2
1 )T S2S

1/2
1 ∈ SN (3.10)

induces COE measureµS in the imageSN for S2 from COE and arbitraryX. It follows that
the eigenvalues of(S1/2

1 )T S2S
1/2
1 and ofS1S2 are distributed according to (2.2) withβ = 1,

which, on one side, proves that the the mapping does not give CUE and, on the other side,
covers the case B5 from the table.

(g) Similar reasoning proves the validity of B4. Indeed, observe that sinceS = UTU

for some unitaryU the matrixSD = UTUD is unitary similar to toUDUT , but from an
already proven case B3 from the table we know that such multiplication produces COE.

(h) A superposition of two spectra has JPD different from canonicalPβ . The two-level
correlations can be expressed as a combination of correlations of both initial spectra (with
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Figure 1. Number variance62(L) for three ensemblesD3 (�), C1 (M), andD11 (◦) with
JPDP2 typical of CUE, and two ensemblesD7 andD8 (full symbols) with COE like JPDP1.
Full and broken curves stand for random matrix theory results for COE and CUE.

rescaled argument) [16], while the level spacing distribution may be obtained as a special
case of the Berry–Robnik distribution [17] (for two equal chaotic layers).

(ni) Conjectures based on numerical results. Conjectures indexed by the same index are
equivalent. Random orthogonal matrices where generated as described in appendix A. A
modified version of an algorithm for generation of random unitary matrices, first presented
in [15], is given in appendix B. We generated several realizations of discussed products,
diagonalized them numerically and compared the level spacing distributionP(s) and number
variance62(L) with known predictions of canonical ensembles [6]. Our numerical results
are valid thus in the limit of largeN (practicallyN ≈ 20 and larger). We have performed
additional cross-checking by repeating calculations (with similar results) using random
matrices generated out of eigenvectors. In order to verify or reject the hypothesis concerning
properties of the spectra, the long-range correlations were found to be more informative
than spacing distribution. In figure 1 we display number variance averaged over spectra of
exemplary composed ensembles—(O ∗ S, S1 ∗ S2 ∗D,U ∗D ∗U † ∗D) typical of CUE, and
other (D1 ∗O ∗D1 ∗OT , D1 ∗O ∗D2 ∗OT ) typical of COE.

(m) Consider a composed ensemble defined as a product ofn matrices, each pertaining
to a given ensemble. For largen we expect the product to be distributed uniformly with
respect to the Haar measure, thus displaying the CUE-like spectral fluctuations. This remark
obviously holds if at least one matrix belongs to CUE (see ensemble A6). On the other
hand, it does not hold if alln matrices belong to the Poissonian ensemble, since their product
displays the JPDP0.

3.4. Intermediate ensembles

Some extensively studied physical models (e.g. kicked rotator [18]) are described by unitary
matrices with a band structure and do not pertain to canonical circular ensembles. It is
therefore important to study properties ofintermediate ensembles[19] which interpolate
between canonical ones.

Observe that the JPD of the composed ensembles A5, B5 and D1 can be written as

P [Uβ ∗ Uβ ] = P [Uβ ′ ] (3.11)

with β = β ′ equal to 2, 1, and 0. The numberβ, characterizing the degree of the level
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Figure 2. Number variance62(L) for interpolating ensemblesUδ (open symbols) and the
corresponding composed ensemblesUδ ∗ Uδ (closed symbols) forδ = 0.1 (♦), δ = 0.3 (◦) and
δ = 0.7 (∇). Broken and full curves stand for Poisson and CUE results, respectively.

repulsion, (2.2), for ensembles interpolating between CPE and CUE may take any real value
in [0, 2].

In order to investigate, to what extend formula (3.11) may be generalized, we constructed
random unitary matrices pertaining to ensemblesX interpolating between CPE and CUE
as described in appendix B. We analysed the spectrum of a product of two such matrices
belonging to the ensembleX1 ∗ X2. Numerical results show that the spectral properties
of the products are closer to CUE and these of the initial ensembleX. This is clearly
visible in figure 2 representing the number variance62(L) [6] for simple and composed
interpolating ensembles for three values of the control parameter. In every case the spectra
of products of two matrices (full symbols) are less rigid than the spectra of the simple
interpolating ensemble (open symbols). In other words, for this family of interpolating
ensembles relation (3.11) seems to hold withβ ′ being an unknown function ofβ satisfying
β ′ > β.

Spectral properties of the product can be understood realizing that the matrices belonging
to the interpolating ensembleX enjoy a band structure, as demonstrated in figure 3. Vaguely
speaking, a product of two band matrices possesses a band of a double width, and the spectral
properties of composed ensembles are thus closer to those typical of CUE.

3.5. Physical applications

Describing quantized physical systems one often encounters a structure of one of the
above-mentioned composed ensembles. Analysing a concrete physical system we deal
with deterministic matrices, so the assumptions concerning randomness of each matrix
forming the composed ensemble cannot be rigorously fulfilled. It seems, however, that the
assumptions concerning randomness are too strong: below we provide examples of quantum
systems which are characterized by JPD found for an appropriate composed ensemble,
although some composing matrices do not display required properties of presupposed
canonical ensembles. To show this one may study the statistical properties of asemiclassical
ensemble, i.e. the properties of several quantum realizations of the same classical system,
distinguished only by different values of the relative Planck constant (spin length).

Let us start the discussion by analysing periodically time-dependent quantum systems.
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Figure 3. Squared moduli of elements of a 35× 35 random matrix|Ukl |2 taken from an
interpolating ensembleUδ with δ = 0.5. Observe a band structure of the unitary matrixU .

Generally, JPDP1 corresponds to fully chaotic systems with (generalized) time-reversal
invariance, while the spectrum characterized byP2 provides an evidence that such a
symmetry has been broken. Let us consider the composed ensemble D6. A single orthogonal
matrix O pertaining to HOE does not often appear alone in the theory, nevertheless the
compositionsO ∗D2 ∗OT are crucial for many important models. Consider an exemplary
periodically kicked system described by a HamiltonianH = H0 + kV

∑
n δ(t − nT ). Its

free evolution is represented byU1 = exp(T H0) and the perturbation term can be written
asU2 = exp(ikV ), whereV is a symmetric operator andk is the perturbation strength. It is
natural to represent the system in the eigenbasis ofH0 so the unitary matrixD1 = exp(iTH0)

is diagonal. Orthogonal rotationO allows one to change the basis into eigenbasis ofV and
obtain eigenvalues ofU2. Note that discussed ensembleD1 ∗O ∗D2 ∗OT corresponds just
to the Floquet operator

F = eitHeikV (3.12)

of such a system. We can therefore expect that if both operatorsH and V sufficiently
do not commute (so as to assure that the transition matrixO is generic in sense ofµO),
then for generic values of the parameterst andk the operators exp(itH) and exp(ikV ) are
‘relatively random’ [20] and the system described by Floquet operatorF is chaotic. In fact
the structure (3.12) is typical to several models for quantum chaos discussed in the literature
(kicked rotator [18], kicked top [21, 4], kicked Harper model [22]).

In ensemble D6 it is assumed that the diagonal matricesDi are random. In the simplest
chaotic kicked top modelF1, defined by the angular momentum operatorsJx, Jy, Jz acting
on (2j + 1)-dimensional Hilbert space as:F1 = exp(itJz) exp(ikJ 2

x /2j) [21], the diagonal
matrix D2 reads(D2)lm = δml exp(ikl2/2j). Due to the factorl2 in the exponent for a
generic value of the parameterk the diagonal elements of the matrixD2 are pseudorandom
[23] what assures the COE-like spectral fluctuations of the orthogonal topF1.
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To observe theP1 JPD of eigenvalues characteristic to the composed ensemble D6 it
is therefore sufficient, if at least one of the matricesD1 andD2 is pseudorandom. On the
other hand, if both diagonal matrices(Di)ll are of the structure exp(ikl) which is far from
being pseudorandom, the resulting operatorF ′1 does not pertain to COE, which corresponds
to the integrability of the kicked top withV ′ = Jx [4].

In order to get a CUE spectrum it is necessary to break the time reversal symmetry (or
any generalized antiunitary symmetry) [4]. As follows from example D9 this can be done
by adding additional unitary terms generated by a kick—perturbationṼ not commuting
with H nor V . This scheme corresponds exactly to the so–called unitary kicked top given
by [21]

F2 = eik1J
2
x /2jeitJzeik2J

2
y /2j (3.13)

with k1 6= k2 (and arbitrary order of unitary factors), or CUE version of kicked rotator [18].
According to remark (f) the systems which can be brought to a symmetric COE-like

structure by a similarity transformation display spectra described byP1 JPD. Therefore
example B5 represented byS1S2 ∼ S

1/2
1 S2S

1/2
1 leads to COE spectrum, in contrast to

example C1:S1S2D, for which such a transformation is not possible. In the same spirit
it is sufficient to modify slightly the system (3.13) intoF3 = eik1J

2
x /2jeitJzeik2J

2
x /2j , or

F4 = eikJ 2
x /2jeitJzeikJ 2

y /2j , so as it recovers the generalized antiunitary symmetry and its
spectrum pertains to COE.

Any ‘unitary’ top Fu, without time-reversal symmetry, may be artificially made
symmetric by adding the same sequencesFu of perturbation in the reverse order. Therefore
F = FuF

T
u displays COE-like fluctuations of the spectra. Mathematical theory of

time reversible and irreversible tops is given in [21], while some further examples were
numerically studied in [24].

A product of two symmetric random matricesS1S2 arises in the theory of chaotic
scattering [11, 12, 25]. Its spectrum obeys COE statistics, as follows from the example B5.
The same statistics is characteristic to several versions of quantized Baker map [26, 27, 28],
which is also represented by a product of two matricesB = F1F2, although both matrices
symmetricF1 andF2, defined via Fourier matrices, do not show the properties of COE.

As a last example let us consider the piecewise affine transformation of the torus, which
can be quantized as [28]T = FD1F†D2. Diagonal matrices, of the type discussed above,
(D1)ll = exp(ial2) are pseudorandom for a generic value of the parametera. Albeit the
symmetric Fourier matrixF is not typical to COE, the structure ofT resembles the ensemble
D12, and its spectrum confers to the predictions of CUE.

4. Concluding remarks

Let us conclude our paper with the following, summarizing remarks. Various statistical
properties of products of random matrices can be interesting when studying quantum chaotic
systems influenced by symmetry breaking perturbations. We showed that using our results
we can predict properties of spectra of a large class of periodically driven model systems
(kicked tops).

From the mathematical point of view our investigations leave many questions open. Not
in all cases we were able to calculate the resulting probability distribution of the composite
ensembles. In fact it was possible only in those cases where the distribution coincided
with one of the ‘classical’ ones (COE, CUE, CPE, HOE). In some cases for which we
did not find the probability distribution of the ensemble we were nevertheless able to give
the corresponding distribution of the eigenvalues, from which the most popular statistical
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measure of quantum chaotic systems, namely the distribution of neighbouring levels, is
easily calculable. For some other composed ensembles we provided numerical evidence for
their distribution of eigenvalues applying efficient methods of constructing of random unitary
ensembles of all canonical ensembles. Further investigation should resolve the problem of
the full probability distributions for these composed examples and find analytical arguments
for distributions of eigenvalues founded numerically.
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Appendix A. Random orthogonal matrices

The distribution of eigenvalues in the ensemble of random orthogonal matrices can be
found in [14, 29]. We shall give here the relevant result for completeness. The distribution
density of matrices in the ensemble is the (normalized) Haar measure on the orthogonal
group o(N). The simpler situation occurs forN odd. In this case among the eigenvalues
there is one (sayφ0) equal 1 or−1. The rest of the eigenphases can be grouped into
pairs (φi,−φi),−π < φi < π , i = 1, . . . , (N − 1)/2. With the probability 1 they are not
degenerate and distributed independently of eigenvectors. The joint probability distribution
of eigenphases reads

P(φ1, . . . , φ(N−1)/2,±1) = N
(N−1)/2∏
n=1

(
(1± 1) sin2 φn

2
+ (1∓ 1) cos2

φn

2

)
×| sinφn|

∏
k<n

sin2 φn − φk
2

sin2 φn + φk
2

(A.1)

where the last argument±1 and the alternative signs in the rest of the formula refer to
φ0 = 1 or φ0 = −1. For the slightly more complicated case ofN even consult the above
cited books of Girko.

In order to generate numerically a random orthogonal matrix typical of HOE we
employed a parametrization of the orthogonal group defined by Hurwitz in the classical
paper [30] published exactly 100 years ago. An arbitraryN -dimensional orthogonal matrix
O may be written as a product ofN(N − 1)/2 elementary orthogonal rotations in two-
dimensional subspaces. The matrix of such an elementary orthogonal rotation will be
denoted byF (i,j)(ψ). The only non-zero elements ofF (i,j) are

F
(i,j)

kk = 1 k = 1, . . . , N k 6= i, j
F
(i,j)

ii = cosψ F
(i,j)

ij = sinψ

F
(i,j)

j i = − sinψ F
(i,j)

jj = cosψ.

(A.2)

From these transformations one constructs the followingN − 1 composite orthogonal
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Figure A1. Level spacing distributionP(s) for an ensemble of orthogonal matrices distributed
uniformly with respect to the Haar measure (histogram) may be approximated by the CUE
formula (full curve).

rotations

F1 = F (N−1,N)(ψ01)

F2 = F (N−2,N−1)(ψ12)F
(N−1,N)(ψ02)

F3 = F (N−3,N−2)(ψ23)F
(N−2,N−1)(ψ13)F

(N−1,N)(ψ03)

. . .

FN−1 = F (1,2)(ψN−2,N−1)F
(2,3)(ψN−3,N−1) . . . F

(N−1,N)(ψ0,N−1)

(A.3)

and finally forms the orthogonal transformationO as

O = F1F2F3 . . . FN−1. (A.4)

Uniform distribution with respect to the Haar measure on the orthogonal group is achieved
if the generalized Euler anglesψ0s are uniformly distributed in the interval 06 ψ0s < 2π ,
and the remaining anglesψrs (for r > 0) are taken from the interval [0, π ] according to
the measure dµr = (sinψrs)rdψrs [30]. An alternative way to generate random orthogonal
matrices was recently proposed by Heiss [31]. Random orthogonal matrices may also be
obtained as eigenvectors of real random symmetric matrices typical to Gaussian orthogonal
ensemble.

Figure A1 presents the level spacing distribution obtained of 20 000 random orthogonal
matrices obtained by Hurwitz parametrization forN = 41. Numerical data suggest that
statistical properties of the spectra of random orthogonal matrices are close to the CUE
predictions, although some deviation for small spacings may be observed. Note that this
distribution is invariant with respect to orthogonal rotations.

Appendix B. Random unitary matrices

In our earlier paper [15] we also used the Hurwitz [30] parametrization to generate random
unitary matrices. We present it here in details for completeness of this paper and since
in the text of [15] a slightly different, not yet verified algorithm appeared (the numerical
calculation, however, were based on the prescription given below).
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An arbitrary unitary transformationU can be composed from elementary unitary
transformations in two-dimensional subspaces. The matrix of such an elementary unitary
transformation will be denoted byE(i,j)(φ, ψ, χ). The only non-zero elements ofE(i,j) are

E
(i,j)

kk = 1 k = 1, . . . , N k 6= i, j
E
(i,j)

ii = cosφeiψ

E
(i,j)

ij = sinφeiχ

E
(i,j)

j i = − sinφe−iχ

E
(i,j)

jj = cosφe−iψ.

(B.1)

From the above elementary unitary transformations one constructs the followingN − 1
composite rotations

E1 = E(N−1,N)(φ01, ψ01, χ1)

E2 = E(N−2,N−1)(φ12, ψ12, 0)E(N−1,N)(φ02, ψ02, χ2)

E3 = E(N−3,N−2)(φ23, ψ23, 0)E(N−2,N−1)(φ13, ψ13, 0)E(N−1,N)(φ03, ψ03, χ3)

. . .

EN−1 = E(1,2)(φN−2,N−1, ψN−2,N−1, 0)E(2,3)(φN−3,N−1, ψN−3,N−1, 0) . . .

. . . E(N−1,N)(φ0,N−1, ψ0,N−1, χN−1)

(B.2)

and finally forms the unitary transformationU as

U = eiαE1E2E3 . . . EN−1. (B.3)

The anglesα, φrs, ψrs , andχ1s are taken uniformly from the intervals

06 ψrs < 2πδ 06 χ1s < 2πδ 06 α < 2πδ (B.4)

whereas

φrs = arcsin(ξ1/2r
rs ) r = 1, 2, . . . , N − 1 (B.5)

with ξrs uniformly distributed in

06 ξrs < δ. (B.6)

If the parameterδ is set to unity then the obtained matrix is drawn from the circular unitary
ensemble [30].

In order to obtain a family of ensembles interpolating between diagonal matrices of
CPE and generic unitary matrix typical of CUE we construct a productUδ = DÛδ. The
diagonal matrixD is typical of CPE, while the matrix̂Uδ is obtained according the above
procedure with real parameterδ ∈ (0, 1) determining the intervals in equations (B.4) and
(B.6). Varying the value of this parameter from zero to unity one obtains a continuous
interpolation between CPE and CUE [19].

Random unitary matrices may also be constructed by takingN eigenvectors of random
Hermitian matrix pertaining to the Gaussian unitary ensemble. In this procedure one must
specifyN arbitrary phases of each eigenvector. This method, albeit simple, does not allow us
to control parameters of the interpolating ensemble as is possible for the Hurwitz algorithm
discussed above.
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[20] Kuś M andŻyczkowski K 1991Phys. Rev.A 44 956
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